

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Structures and Solvatochromic Phosphorescence of Dicationic Terpyridyl Platinum(II) Complexes with Foldable Oligo(*ortho*-phenyleneethynylene) Bridging Ligands

Ming-Xin Zhu, Wei Lu, Nianyong Zhu and Chi-Ming Che*^[a]

[a] M. X. Zhu, Dr. W. Lu, Dr. N. Zhu, Prof. Dr. C. M. Che Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis The University of Hong Kong, Pokfulam Road, Hong Kong (China)

S 1

Ligand Synthesis:

H-(C=C-1,2-C₆H₄)₆-C=CH. A mixture of H-(C=C-1,2-C₆H₄)₄-C=CH (1.51g, 3.5mmol) and 2-I-C₆H₄-1-C=CSi(CH₃)₃ (2.31 g, 7.7 mmol) were dissolved in 15 mL diethylamine (15 mL) and benzene (10 mL). After the solution was bubbled with argon for 30 min, Pd(PPh₃)₂Cl₂ (54 mg) and CuI (15 mg) were added, and the solution was stirred overnight. (CH₃)₃Si-(C=C-1,2-C₆H₄)₆-C=CSi(CH₃)₃ was obtained by chromatography on silica gel with hexane:CH₂Cl₂ (2:1) as eluent, and was desilylated with excess KOH in CH₃OH/THF solution. Yield: 1.68 g, 77%. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 7.62–7.52 (m, 10H), 7.48–7.46 (m, 2H), 7.29–7.20 (m, 12H), 3.22 ppm (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 132.6, 132.5, 132.41, 132.38, 132.35, 128.6, 128.3, 128.14, 128.11, 128.08, 128.07, 126.5, 125.93, 125.86, 125.6, 124.6, 92.6, 92.5, 92.0, 82.3 and 81.5 ppm; EI-MS: *m/z*: 624 [*M*–2]⁺.

H-(C=C-1,2-C₆H₄)₈-C=CH. A mixture of H-(C=C-1,2-C₆H₄)₆-C=CH (1.30 g, 2.1 mmol) and 2-I-C₆H₄-1-C=CSi(CH₃)₃ (1.25 g, 4.2 mmol) were dissolved in diethylamine (15 mL) and benzene (10 mL). After the solution was bubbled with argon for 30 min, Pd(PPh₃)₂Cl₂ (30 mg) and CuI (8 mg) were added, and the solution was stirred overnight. (CH₃)₃Si-(C=C-1,2-C₆H₄)₈-C=CSi(CH₃)₃ was obtained by chromatography on silica gel with hexane:CH₂Cl₂ (2:1) as eluent, and was desilylated with excess KOH in CH₃OH/THF solution. Yield: 1.30 g, 75%. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ (ppm) = 7.56–7.52 (m, 16H), 7.25–7.22 (m, 16H), 3.22 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ (ppm) = 132.6, 132.5, 132.43, 132.39, 132.34, 132.28 128.6, 128.3, 128.2, 128.12, 128.08, 126.5, 126.0, 125.8, 125.7, 125.6, 124.6, 92.7, 92.6, 92.5, 92.0, 82.3 and 81.5 ppm; FAB-MS (+ve): *m/z*: 827 [*M*+1]⁺.

Figure S2 ¹H NMR spectra of **5** at the aromatic region in CD_3CN solution.

Figure S3 ¹H-¹H COSY NMR spectrum of **5** in CD₂Cl₂ solution (~ 5×10^{-3} M) at 20 °C.

Figure S4UV-vis absorption traces of 1 in H_2O/CH_3CN mixtures upon increasing the waterfraction.

Figure S6 UV-vis absorption traces of **2** in H_2O/CH_3CN mixtures upon increasing the water fraction.

Figure S7 Emission traces of 2 in H₂O/CH₃CN mixtures upon increasing the water fraction.

Figure S8UV-vis absorption traces of 3 in H_2O/CH_3CN mixtures upon increasing the waterfraction.

Figure S9 Emission traces of **3** in H_2O/CH_3CN mixtures upon increasing the water fraction.

Figure S10 UV-vis absorption traces of 4 in H_2O/CH_3CN mixtures upon increasing the water fraction.

Figure S12 UV-vis absorption traces of **6** in H_2O/CH_3CN mixtures upon increasing the water fraction.

Figure S13 Emission traces of 6 in H₂O/CH₃CN mixtures upon increasing the water fraction.

Figure S14 UV-vis absorption traces of 7 in H_2O/CH_3CN mixtures upon increasing the water fraction.

 $\label{eq:Figure S15} Figure \ S15 \qquad \mbox{Emission traces of 7 in H_2O/CH_3CN mixtures upon increasing the water fraction.}$

Figure S16 UV-vis absorption traces of **8** in H_2O/CH_3CN mixtures upon increasing the water fraction.

Figure S17 Emission traces of **8** in H₂O/CH₃CN mixtures upon increasing the water fraction.

Figure S18 UV-vis absorption traces of **9** in H_2O/CH_3CN mixtures upon increasing the water fraction.

Figure S19 Emission traces of 9 in H_2O/CH_3CN mixtures upon increasing the water fraction.

Figure S20 TEM image of **8** in H_2O/CH_3CN mixtures at 90% water fraction showing spherical nanoparticles.

Figure S21 Absorption and emission spectra of complex $[(Cy_3P)Au-C=C-1,2-C_6H_4-(C=C-1,2-C_6H_4)_3-C=C-Au(Cy_3P)]$ (Cy = cyclohexyl, as shown in the inset) in degassed CH₂Cl₂ solution at 298 K showed a weak 0-0 phosphorescence band at λ_{max} at 523 nm.